Random Gradient Descent Tree: A Combinatorial Approach for SVM with Outliers

نویسندگان

  • Hu Ding
  • Jinhui Xu
چکیده

Support Vector Machine (SVM) is a fundamental technique in machine learning. A long time challenge facing SVM is how to deal with outliers (caused by mislabeling), as they could make the classes in SVM nonseparable. Existing techniques, such as soft margin SVM, ν-SVM, and Core-SVM, can alleviate the problem to certain extent, but cannot completely resolve the issue. Recently, there are also techniques available for explicit outlier removal. But they suffer from high time complexity and cannot guarantee quality of solution. In this paper, we present a new combinatorial approach, called Random Gradient Descent Tree (or RGD-tree), to explicitly deal with outliers; this results in a new algorithm called RGD-SVM. Our technique yields provably good solution and can be efficiently implemented for practical purpose. The time and space complexities of our approach only linearly depend on the input size and the dimensionality of the space, which are significantly better than existing ones. Experiments on benchmark datasets suggest that our technique considerably outperforms several popular techniques in most of the cases.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CO2 Forest: Improved Random Forest by Continuous Optimization of Oblique Splits

We propose a novel algorithm for optimizing multivariate linear threshold functions as split functions of decision trees to create improved Random Forest classifiers. Standard tree induction methods resort to sampling and exhaustive search to find good univariate split functions. In contrast, our method computes a linear combination of the features at each node, and optimizes the parameters of ...

متن کامل

Nonconvex Low-Rank Matrix Recovery with Arbitrary Outliers via Median-Truncated Gradient Descent

Recent work has demonstrated the effectiveness of gradient descent for directly recovering the factors of low-rank matrices from random linear measurements in a globally convergent manner when initialized properly. However, the performance of existing algorithms is highly sensitive in the presence of outliers that may take arbitrary values. In this paper, we propose a truncated gradient descent...

متن کامل

Nonnegative Least Squares Learning for the Random Neural Network

In this paper, a novel supervised batch learning algorithm for the Random Neural Network (RNN) is proposed. The RNN equations associated with training are purposively approximated to obtain a linear Nonnegative Least Squares (NNLS) problem that is strictly convex and can be solved to optimality. Following a review of selected algorithms, a simple and efficient approach is employed after being i...

متن کامل

Application of the Cross-Entropy Method to Dual Lagrange Support Vector Machine

In this paper, cross entropy method is used for solving dual Lagrange support vector machine (SVM). Cross entropy (CE) method is a new practical approach which is widely used in some applications such as combinatorial optimization, learning algorithm and simulation. Our approach refers to Kernel Adatron which is solving dual Lagrange SVM using gradient ascent method. Hereby, the cross entropy m...

متن کامل

A new Levenberg-Marquardt approach based on Conjugate gradient structure for solving absolute value equations

In this paper, we present a new approach for solving absolute value equation (AVE) whichuse Levenberg-Marquardt method with conjugate subgradient structure. In conjugate subgradientmethods the new direction obtain by combining steepest descent direction and the previous di-rection which may not lead to good numerical results. Therefore, we replace the steepest descentdir...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015